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THE PARAMETERIZATION OF ORTHOGONAL MATRICES:
A REVIEW MAINLY POR STATISTICIANS?!

By I. J. Good and Andre I. Khuri

Virginia Polytechnic Instituite & State University and University of Florida

Abstract

Techniques and applications for the parameterization of orthogonal matrices

mw,'nam,mzmmuzdw.

1. Introduction.

8yan‘a:thogmlmtﬁxguoshﬂ1mna_xe__alsqmownxo£ord«nnn
zo:mg__c'nmmmm, whctog' dmotosthltnnspcood_g.
Orthogonal mairices are used frequently in statistics, especially in linear models
and multivariate analysis (s-o; for example, Graybill, 1961, Chap. -11; Searle,
1971, Chap. 2; Anderson, 196%; and James, 19545.

Orthogonal matrices of determinant 1 represent elements of the rotation g:ﬁup
in n dinensions. Gel'fand et al. (1963) and Mumaghan (1938) give extensive
discussions of the represeniation of the n-dimensional rotation group. Hoffman et
al. (1972) and Raffenetti and Ruedenberg (1970) represented the class of
n-dimensional orthogonal matrices in terms of generalized Eulerian angles. The

iThis work was supported in part by a grant #<’=M1887o from the National

Institutes of BHealth and one from the Office of Naval Research
#NO0O014-86-KX-0089,

ANS 1980 subdject classiticatiors. Primary 63P30; Secondary 62H99, 1SAS7.

Key words and phrases: Cayley's transformation; Diagonalization,
simultanecus; Eulerian angles, zeneralized; Haar measure; Representation of the
orthogonal group; Rotation groups.
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representation of three -dimensional orthogonal uﬂ;;tlby Bulecian mmhu-wu;
been used in the study of the motion of a rigid body (Euler, 1776, mcr,'
1927, pp. 9-10). Por further ideas and a three-dimensional application, see
Moran (197S).

The n? elements of an orthogonal matrix are subject %o 4n(n+l) constraints.
Tt is therefore not surprising that they can be represented by only n2 - n(n+l) =
yn(n-1) independent parameters. A representation is convenient if the whole of a
matrix can be quickly computed from the kn(n-1) parameters. Such a representation
facilitates the search for an orthogonal matrix that satizfies some optimality
criterion. The independent parameters can be used also in integrating a function
over the n-dimensional orthogonal group (Murnaghan, 1938, pp. 230-242), which is
defined as the set of all n x n orthogonal matrices with the operation of matrix
multiplication.

As far as we know, the various methods of parameterizing orthogonal matrices
are not available in the statistical literature. Our aim is to bring several of these
methods to the attention of the statistical profession, and we do not claim
mathematical originality, although probably a few of our comments have some
nqvclty.

Pirst we mention some applications. The cited references may be consulied

for more details. The rotation group of n x n orthogonal matrices will be dencted

by o(n).

2. Some Applications in Statistics of Parameterization of the Orthogonal Group.
(a) A parameterization of 0(n) can be used to define an invariant (Haar)

measure, i, on 0(n). This meamire is invariant in the sense that if a set G of

orthogonal n by n matrices has measure u(G) then, for every orthogonal n by n
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matrix C, W(G) = K(GC) = u(CG) and UE [and 'gdj déndtes W8 sat of maniced’
obtained by multiplying all the matrices in G on the right [left) by C. Haar
measure is unique up to a positive multiplicative constant. In accordance, for
example, with James (1954, p. 53), the Haar measure u(G), if it exists, is given
by the ¥n(n-1)-fold integral

1€i<i<n

we) = [g =z (ei - dey) ,» G € O(n)

where ¢; and cj are the it and P column vectors of an orthogonal matrix €, (g °
dﬁ)dm;mmm.mmm«aaommmuwu
interpreted as an exterior product. ({Exterior producis are explained, for
example, by James, 1934, pP. 46.) Por example, if n = 2, the differential form,

n(gi ¢ dey), for

cos © gin o
L= , 00 <2 ,
l -sin 9 cos ©
is (c, ° dgz) = de.

The Haar measuxe has been used to derive the distribution of the canonical
correlation coefficients (James, 1954). Anderson (1965) used the representation
given by formula (3.2) of Section 3 below to obtain the joint distribution of the
eigenvalues of the sample. variance-covariance matrix. See also, for example,
Wijsman (1957), Chattopadhyay et al. (1976).

(b) When carrying out simulation experiments in regression theory, the
conditionmmborol_!'iuofinuzm, mzc;ummmwmm
regression model. This condition number is defined (Hartree, 1955, p. 153) as

the ratio of the largest to the sumallest of the eigenvalues of 5’5. George Terrell




| pointed out (private commuiical:iéﬁ.) that —By applying tandom oﬂhuaw
transformations to X, we can generate several different X matrices for which the
condition numbers are all equal. This would be conveniemt in the simulation
experiments. The generation of such random orthogonal transformations can be
facilitated by utilizing the independent pazanm obtaindd through parameterization
of the orthogonal matrices representing these transformations.
(c)mmmgm«mmudm
interest in statistics, especially in the analysis of random - or mixed-effects
models. Let Ay, Az, ... , Ag be 2 (3 2) positive definite symmetric matrices of
order P-x P. Suppose that these maltrices are not simultanecusly diagonalizable
'(mtl‘nydonotm.), andwmboﬁmmommwﬂx,g,m
muﬁmy'uWumo". Plury and Gautschd (1985, p.
170) introduced a measure of simultanecus deviation of the matrices, Ba, ¥, BA,B°,

«so » BAgB', from diagonality. This measure is given by the function

x‘gv .5&'.‘.'2' see _eli Ry N2y «.. 5, Ng) =

’ L
o (1aiag(BA4B’ )i/ iBA4B" 117 (2.2)
i=1

where diag(BAB') is a diagonal matrix having the same diagonal elemenis as BAB'
(=1, 2, ... , 1), 1| denctes the determinant of a matrix, and n,, Nz, ... ,
np are positive weights. It is known that x > 1 with equality occurring if and only
u__ndiagaalizostht#'s. nisl:hcteforoofmtotesttofmdtmminimmofxovor
the rotation group O(p).

The determination of the optimal orthogonal mahrtx3 Bo, that minimizex x in

(2.1) can be reduced to an optimization problem in ¥p(p-1) dimensions since this
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>is:;'the number of independent paxanot;:s that represent the elements of .O(P).
Plury and Gautschi (1986) did not follow this procedure; instead, they introduced
an iterative algorithm whereby a converging sequence of orthogonal matrices, g(°) ,
B(3), ..., was derived such that x(B{¥**)) < x(3(})), j=0,12, 2, ... . A1
pairs of columns of the orthogonal matrix B(J) obtained in the 3 iteration (3 = O,
1, 2, ...) are subjected to rotations by a specific 2 x 2 orthogonal matrix
parameterized by a single parameter. This yields the matrix B(J*1) and the
process is repeated until scme convergence criterion is met.

(d) The need for parameterization arises in response surface analysis.

Consider a linear model of the form

‘!snﬁ-

antre, (2.2)
where Y is the vector of observations, P is a vector of unknown parameters, and X
is a known matrix of order n x p and rank p. The elements of X are functions of
the settings of m input variables demoted by x,, X, ... , Xy. The n x m matrix,
D = (xyj), where x,i is the setting of the i'P variable at the u*h experimental run
(u=1,2, ... , n53=1, 2, ... , m), is called the design matrix. The
elements of the error voetoz: in (2.2) are assumed to be independently and
identically distributed random variables with zero means and variances equal to o2,

Tests of significance concerning the parameter voctoz‘gi.n(z.Z) depend on

mmpumum:ummmymw. The effect of nonnormality of the

 error distribution on these tests has been studied by several authors (see, for

example, Pearson, 1931; Geary, 1947; Gayen, 1950; and David and Johnson,
1951a, 1951b). Box and Watson (1962) pointed out that the sensitivity to
nonnormality depends very much on the settings of the input variables specified in

the design matrix. This was also demonstrated by Vuchkov and Solakov (1980).
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Thus, a properly chosen design maifix €an Ivad (6 lesiy thel are resistant, or-
robust, to failure of the normality assumption.
Box and Watson (1962) introduced a design robustness criterion for a model

of the form (2.2) of degree one (a first-order model), which can be rewritten as

J=3o+Prts, (2.3)
mninacdmvmdmdomtnx1.ghthodndmmam
uat}_a[_l_:‘g]. and (8o, ?')'s‘_p_. Box and Watson's criterion is for testing the

hypothesgis

Bo: T=0 (2.4)

using the mean square ratio

P(D) = [y'D(D'D)™D'y/ml/[y' (X - XX'X) X’ )y/(n-m-1)] .

f" Y [ K 4 F
They showed that in nonnormal situations, l’(‘l')_) is distributed approximately under
Ho as an P-distribution with modified degrees of freedom given by v, = ™m and v,
= n(n-m-1). Here the corrective factor n is equal to unity if g(D) = 0 regardless
.

of the y's or their distribution, where
g(D) = d - m(m+2)(n-1)/(n(n+d)] , (2.5)

m

and d = T df; with d4; being the ith diagonal element of D(D'D)4p’,
1’1 -~ o -

Since n is equal to unity when the error distribution is normal, a design

matrix satisfying

(D) =0 . (2.6)

will result in an approximate P statistic with degrees of freedom identi-




cal to those obtained under normality. Consequentiy, the design matrix
can determine whether the distribution of P(D) is insensitive (robust)
to nonnormality. The matrix IXD'D)"!D’', being idempotent, can be ex-

pressed in the form

D'D)7D" = 2 diae(In, Q" .

Aoy
vhere P i3 an orthogonal matrix. In this wvay, the parameterization of
JXD'D)"*D’ can be reduced to that of an orthogonal matrix. The quantity,

d, in (2.5) can be regarded as a function, h(‘l_:), of‘g and (2.5) becoues
8(2) = h(}_?__) - m{m¥2)(n-1)/[(n(n+l)] . (2.7)

rozazwn,mwwmmmm-wmmuwm‘gso
that g2(D) has an absolute minimum over the rotation group O(n). If this abeolute
minimum is zero, then the Box-Watson Criterion is satisfied. Otherwise, the optimal
design that minimizes 3‘(2) is the design that comes :'clmlt" to satisfying this
criterion. For more details concerning this matter see Khuri and Myers (1961).

The minimization process can be carried out by expressing h(_l:_) in (2.7) in
terms of the parameters of the orthogonal matrix P.

We now describe varicus methods of parameterization.

3. BHow to Parameterize an Orthogonal Matrix.
The four methods we shall discuss are (i) expressing an orthogonal matrix in

the form ez where z is skew-symmetric, (ii) using Cayley's transformation which
also gives an expression in terms of a skew-symmc;trlc matrix, (iii) using Eulerian
angles for the three-dimensional case, and (iv) using generalized Eulerian angles
for the n-dimensional case.

(i)H_gisannxnorthozonalmatrlxwithdﬂoml,t.nenitcanbo
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written in the form

9= el » (3.1)

wbore}_' is a sgkew-symmetric malrix (see, for example, Ganimacher, 1939, p.
288). (The exponential is of course definable as an infinite series.) The
euwud;,ammmw, canbomodbms.
uaw.!t&h given, Mhtﬂﬂgnmﬁmﬂnﬂu\'mmdg_.
These are necessarily of the form e o1, ¢*19z, . . | o&*199 3 | where the
eigenvalus 1 is of multiplicity (n - 2q), and none of the real numbers ¢y
o) is a multiple of 27 (I =1, 2, ... , Q). (Those that are odd multiples
of m give an even mmber of eigenvalues equal to -1.) If we dencte the
matrix [.: ° ] by [a + bi], a notation that is reascnable because the
2 x 2 matrices form a representation of complex numbers, then 2 can bdbe

written (Gantmacher, 1959, p. 288), as the product of three real matrices,

9=, atag(te’®y, ..., (', 1, ..., 1)) . (2.2)
Here 3& is an orthogonal matrix of the form

ng"' = t.x.ﬂ.t Z"’ zl' ‘zgv cee 'R'ZQ' qu-'-’_. cee '_x.ﬂ]

such that xj + 1zj is an eigenvector with eigenvalue eioj (3 =1, ... , Q),
and‘a is an eigenvector with eigenvalue 1 (k = 2q +1, ... , n).

¥e now define the skew-symmetric matrix T by the equation

I = Q. diag([ie,], ... , [i#g), O, ... , 0)Q, . (3.3)

since o{1%3) = (193] ve nave Q = eL as required.




We note that

where
Ry = Q, diag{I,j, [C“’jﬂ']- jn-zj-z)g;. y 1=0, ... , g1,

and where Ip; and In.,j.2 are the identity matrices of dimensions 2) and n-2j-2,
respectively. If Ny is a plane parallel to both the vectors x4, and yj,* then
&zwamdUnn-mlnﬁngfmdmzypdumm
(n-2)-space orthogonal to O44; (Vitali, 1928). mg:«mmmo{q
such simple rotations. When n = 3 and ¢ = 1, this is a familiar fact in dynamics,
known to Euler. Toobhinapowctfwcaddmﬂdplyaﬂ&wmlnofm
by a.

We note also that

X(x; + iyy) = doy(xy +iyy) , 3 =1, 2, ... , q,
- : (3.4)
-m‘-.o [ k=2q+1' ses g n .

Equations (3.4) state that xj + iy is an eigenvector ot_g with eigenvalue i¢y, and
that x is an eigenvector of T with zero eigenvalue. Since the eigenvalues of X
are purely imaginary or zero (at least one of them is zero if n is odd), and the
imaginary ones pair off in conjugate pairs tie,, ... , *idg, it follows that (3.3)
gives a2 representation of a real skew-symmetric matrix in terms of its eigenvalues
and eigenvectors (Gantmacher, 1959, p. 285). This observation enables us to
almw.og it T is given and if (3.1) is known to be true. We first putlm the

form (3.3), then we calculate 3 by (3.2). For convenience in computing the

v




éigenva.lues and eigenvectors of T, we noté that xy and =1 .09 are
eigenvectors of the symmetric matrix T? with eigenvalue -bjz. This can be easily
seen from (3.3), which when both sides are squared gives
q 2 ’ [}
I* = - L oy(zxy +3573) -
=1
Example, n = 3. In three dimensions any orthogonal matrix 3, with

determinant 1, has the form

o -b
3 = w - ° a -
- -a o
- The eigenvalues of
(o] c -b
I = -c a
b -a (o]

are ip, -ip, and O, where p = (a% + b% + c2)%, The normalized eigenvector
with eigenvalue O is w = p~{a, b, c]*' and the other normalized eigen-

vectors can be chosen as u = iz where
oy

u= (b2 + c2) %[0, ¢, -bJ’

¥ = p b2 + c2)74(b2 + 2, -ab, -ac)’ .

The vectors u and Yy are orthonormal eigenvectors of 3‘ with the eigenvalue

10




-p2.

rrom (3.2), we have
9 = [u, v, widiag((e1P),1)(u, v, wI* .

The matrix Q represents a rotation of the 3-space about a line whose di-
rection cosines are (a/p, b©/p, ¢/pP).
(i1) If Q is an orthogonal matrix that does not have the eigenvalue

-1, then it may be written in Cayley’'s form (Gantmacher, 1959, p. 289).
Q= (I - SI +39)* (3.5)
had -~ Apm gon o

where S is a skew-symmetric matrix, [£+_s‘unmrdn¢uh:tf_§is
skew-symmetric. A proof of this fact is given by Perrar (1950, p. 163) who
attributes the fact to Cayley. A simpler proof is that all the eigenvalues of a
skew -gymmetric wzixzmpu:cly imaginary or zero (because it is Hermitian) and
therefore -lczmntboaneigmmds.] The form (3.5) has the advantage of
deﬁningg_alamc-ho-onoftmc&mots,Mithalﬂnt'db.ing
restricted to those orthogonal matrices thal do not have-the eigenvalue -1. If this
cqniﬁcnismtanmd,scansﬂnbowrmcnmthotom(rerm.J.sso,p.

164)
9= AT - D@+ (2.6)

whezeg_isadiagonalnattixinwhicheachelemntonthodiaganliseithorlor
-1 (and where S is skew-symmetric). This representation can be made unique by
ingisting that all the plus 1’s precede all the minus 1°'s along the diagonal olg.
When this representation is used we must supplement the 4n(n-1) parameters ing

with an assumption for the rumber, r, of plus 1's i.n_J_’.

1n
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(iii) In three dimensions orthogonal Lx'a'.nsi’ofma.tio;:s with detem 1 are of
course represented by the rotation of a rigid body free to turn about a point O.
The motion of this body is determined by three independent angles known as Eulerian
angles (Euler, 1776; Whittaker, 1927, p. 9; Condon, 1958, p. 6). These angles
can be introduced in various ways. The following one is used by Condon:

Let OXYZ be a right-handed system of rectangular axes fixed in space. Let
Oxyz be rectangular axes fixed relatively to the body and moving with ii, such that
before the displacement the two sets of axes OXYZ and Oxyz are coincident in
position. w:zmkmmmummpwhwdkmamzm:
am.rcmcﬂ.wly,aﬁlﬂiaxzx&hmmm. Dencte the
angles Z0z, XOK, KOx by 6, ¢, ¥, respectively. These are the three Eulerian

By a remark made in Section 3(i) the total movement of the body iz equivalent
to a rotation. This rotation ig representied by the product of three matrices,

thus:

9 = diag([eiV], 1jdiag(1, (e!®])diag((e}?], 1) -

cosd cosy - sind cos® siny sind cosy + cosd coso siny 8ine siny
= |-cosd Sinv - Sind cose cosy -3ind sSiny + cosd cos® cosy sine cosy
sine sine -cogd 8ine@ cose

(3.7)

This then provides a parameterization in three dimensions. The parameterization is
unique if, for example, 0 € 8 < 27, O € $ < 27, and O € ¥ € 1.

(iv) A generalization of the concept of the three-dimensional Eulerian angles
to n dimensions was given by Raffenetti and Ruedenberg (1970). Pormulae and 3

computer program were derived that expressed an arbitrary orthogonal matrix of

12




order n x n in terms of %n(n-1) angular variableés, A .general n-dimensional

orthogonal matrix, 3_, can be constructed by the sequence of recurrence relations

3(&) = 21

g =diag(3(i‘l-), 1} , i=2,3, ... ,n,
AL =ay., sa5.5,5 00 21,6 i=2,3 ...,n,
3(1)33(1)3(1), i=2,3 ... ,n,
g=g™

where (a; 3) (1 =1, 2, ... sy D3 iJ=12,2, ... , ;1< J)is an n x n matrix
whose diagonal elements are 1 except for the diagonal elements in the ith and P
columns, which are cosyjj; all off-diagonal elements are O except for the one
corresponding to the intersection of the ith row and the #N column, which is simnj,
and that on the intersection of the ! row and the i columns which is -siny;.
The choice Q(+) = 1 yields an orthogonal matrix Q = {Qij} with determinant 1, and
the choice Q() = -1 yields a matrix Q with determinant -1.

Conversely, if an orthogonal matrix, g = (Uﬁ}. iz given, then the
corresponding angular variables are found by minimizing the function f(y)
= T (013 - Q13(¥)]%, and where y = (¥,2, ¥13s +-- » ¥n-1,n)’ (i, § = 1,
2, :.. ., D), and the elemants of& are found by a prescribed recurrence
scheme. BHoffman et al (1972), however, give algebraic inversion formulae, and a
computer program, for the angular variables in terms of the elements of the

orthogonal matrix.

4. A Problem Concerning Haar Measure.
It would be of value for numerical integration over the orthogonal group if ,

Raar measure could be generated by kn(n-1) statistically independent random angles

i3
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each uniformly distributed. Por we could then approximate the integration over the

orthogonal group by a discrete sum over points uniformly spaced on circles. In
three dimensions the Eulerian angles do not serve this purpose. For suppose that
¢, ©, and ¢ are each uniformly distributed. Then cosé cannot have the same
distribution as the other elements on the diagonal of the matrix in (3.7), so that
the transformation is not Symmetrical with respect to the axes. Thus the distribukion
camot be invariant under all rotations.

One can arrive at Haar measure for the three-dimensional rotation group by
choosing an axis of rotation with uniform polar angles in (0, m) and (O, 27) and
then choosing an angle w of rotation with uniform distribution in (0, 27). The
matrix giving this orthogonal transformation, expressed in terms of w and the

direction cosmines, cos\, cosy, and cosv, of the axis of rotation, is

1 - z:fh‘ 2c,c;h? - ¢,8 2c,cyh + c,;8
2¢,c;hE + cy8 1 - 287h2 2c,c5hZ - ;8 | , (4.1)
2c,c3h? - c,;8 2c,c3h2 + ¢, 8 1 - zs;'h*

where 8 = sinw, h = ginkw, 8; = sinA, $; = sinu, s, = sinv, C, = CoBA, C; =
cosp, Gy = Cosv, This remult can be readily derived from Whittaker (1927, p. 8).
Pormula (4.1) provides a matrix representation of the rotation group and it is
equipped with Haar measure if A, x, v and w have uniform distributions in (0, 2m),
(o, 2r), (0, 2m), and (O, m) respectively. I seems to be difficult to generalize

this result to n dimensions.

14
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